An Emotion-Guided Approach to Domain Adaptive Fake News Detection Using Adversarial Learning (Student Abstract)
نویسندگان
چکیده
Recent works on fake news detection have shown the efficacy of using emotions as a feature for improved performance. However, cross-domain impact emotion-guided features still remains an open problem. In this work, we propose emotion-guided, domain-adaptive, multi-task approach detection, proving models in settings various datasets.
منابع مشابه
Automatic Detection of Fake News
The proliferation of misleading information in everyday access media outlets such as social media feeds, news blogs, and online newspapers have made it challenging to identify trustworthy news sources, thus increasing the need for computational tools able to provide insights into the reliability of online content. In this paper, we focus on the automatic identification of fake content in online...
متن کاملFake News Detection using Stacked Ensemble of Classifiers
Fake news has become a hotly debated topic in journalism. In this paper, we present our entry to the 2017 Fake News Challenge which models the detection of fake news as a stance classification task that finished in 11th place on the leader board. Our entry is an ensemble system of classifiers developed by students in the context of their coursework. We show how we used the stacking ensemble met...
متن کاملAdversarial Teacher-Student Learning for Unsupervised Domain Adaptation
The teacher-student (T/S) learning has been shown effective in unsupervised domain adaptation [1]. It is a form of transfer learning, not in terms of the transfer of recognition decisions, but the knowledge of posteriori probabilities in the source domain as evaluated by the teacher model. It learns to handle the speaker and environment variability inherent in and restricted to the speech signa...
متن کاملExploiting Tri-Relationship for Fake News Detection
Social media for news consumption is becoming popular nowadays. The low cost, easy access and rapid information dissemination of social media bring benefits for people to seek out news timely. However, it also causes the widespread of fake news, i.e., low-quality news pieces that are intentionally fabricated. The fake news brings about several negative effects on individual consumers, news ecos...
متن کاملStance Detection for Fake News Identification
The latest election cycle generated sobering examples of the threat that fake news poses to democracy. Primarily disseminated by hyper-partisan media outlets, fake news proved capable of becoming viral sensations that can dominate social media and influence elections. To address this problem, we begin with stance detection, which is a first step towards identifying fake news. The goal of this p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2023
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v37i13.26949